

BUPT-MCPRL at Trecvid2014 Instance Search Task

Wenhui Jiang (jiang1st@bupt.edu.cn)

Zhicheng Zhao, Qi Chen, Jinlong Zhao, Yuhui Huang, Xiang Zhao, Lanbo Li, Yanyun Zhao, Fei Su, Anni Cai MCPR Lab

Beijing University of Posts and Telecommunications

Our submission

- BOW baseline + CNN as global feature: 22.7%
 CNN as global feature boosts the performance by about 3% (estimated in INS2013).
- BOW baseline + Query expansion + CNN as global feature: 22.1 %
 That's not normal. We are investigating on it.
- BOW baseline + Localized CNN search : 21.6%
 Localized CNN search boosts the performance by about 0.5%.
- Interactive Run: BOW baseline + Query expansion (Interactive): 23.8%

Brief introduction

Reference Dataset

- 470K shots
- 2 key frames per second
- Max pooling for shot score

Query Images

Average pooling for query score

Feature Model

- Bag-of-words
- Convolutional neural networks

System Overview

BOW Highlights

- Three kinds of local features + BOW framework
 - + ≈<mark>9%</mark> mAP
- Contextual weighting
 - + ≈3% mAP
- Burstiness
 - + ≈2% mAP

Three kinds of local features

- Hessian detector + RootSIFT (128D)
- MSER detector + RootSIFT (128D)
- Harris Laplace + HsvSIFT (384D)
- AKM for training codebook of size 1M

local features	points per image	mAP(INS2013)
MSER + RootSIFT	around 150	16.308
Hessian + RootSIFT	around 500	12.739
Harris + HsvSIFT	around 250	12.967
Total	around 900	21.731

Rich features are important, because they are complementary.

Contextual weighting

• Set different weights on ROI and backgrounds: In the aspect of metric

Typical scheme:
$$sim(q,d) = \sum_{i=1}^{D} \alpha_i q_i d_i$$
, where $\alpha_i = \begin{cases} \beta \ (\in ROI) \\ 1 \ (\notin ROI) \end{cases}$ (1)

Similarity (take inner product and L2-normalization as an example, and set β =3):

$$sim(Q, I_1) = 1.47$$

 $sim(Q, I_2) = 1.33$

Contextual weighting

- A good similarity measurement include of consistent:
 - Similarity kernel.
 - Normalization scheme.
- Good similarity measurement satisfies:
 - Self-similarity equals to one;
 - Self-similarity is the largest.
- L2-norm + inner product √
 - L1-norm + inner product \times
- Advise:
 - When you want to set larger weights on ROI descriptors, you may also need to modify the normalization scheme.

Boost the mAP by 3%

Burstiness

Definition: A visual word is more likely to appear in an image if it already appeared once in that image.

[Jegou. CVPR 2009]

- If we first normalize the feature vector, then calculate the similarity: image with very few descriptors equals to the image contains several dominant descriptors. This also leads to burstiness.
- Advise: L1-based similarity kernel rather than L2-based.

Boost the mAP by 2%

What's next?

- Local features are unable to solve
 - Smooth objects or objects are more suitable to describe using shape etc.
 - Small objects which could extract few local features

- What's next?
 - Introduce better similarity measurement?
 - Keep ensembling more features?

What's next?

How well would Deep Learning work for instance search?

 Decaf has shown that CNN trained on ImageNet2012 1000CLS has good generalization.

[Krizhevsky et al. NIPS 2012]

Two schemes

As global features

Generic object detection + CNN

Scheme 1: As global features

- Activations from a certain layer as global features.
- CNN takes the entire image as the input, therefore it is unable to emphasize the ROI.
- Relatively strict geometric information

Layer	Dim	Metric	mAP (using CNN only)
Fc6	4096	L2	3.84
Fc6 + Relu	4096	SSR	3.43
Fc7 + Relu	4096	L2	3.07
Fc7 + Relu	4096	SSR	2.67
Fc8	1000	SSR	1.34

Boost the mAP by 3% (combined with BOW)

- Scheme 2: Localized search
 - Instance search is inherently asymmetric.
 - CNN is not like BOW, it has fewer geometric correspondences, especially for the output of fully connected layer.
- How to deal with the asymmetric problem of CNN?
 - Train a specific CNNBut where is the training set come from?
 - Generic object detection (derived from RCNN) + CNN feature comparison
 Problem: Designing an efficient indexing system is important.
 As a trial run, we only use it for reranking the top 100 results.

Boost the mAP by 1%

Topic 9113, result from BOW baseline. Images in red box are false results.

Topic 9113, result after reranking.

Failure examples

Failure examples: After reranking

Problems

• The input region is limited to a rectangle, not arbitrary shape.

Problems

	Instance Search		Object Detection
1.	No suitable training data;	1.	Enough training data;
2.	Focus on both intra-class and inter-class analysis;	2.	Mainly focus on inter-class analysis;
3.	Objects to be retrieved could be anything;		Object class to be detected is specified ahead of time;
4.	Require real-time response.	4.	Could be performed off-line.
5.	Focus on finding relevant image from a large dataset.	5.	Focus on detecting relevant object in a given image.

Thanks!

jiang1st@bupt.edu.cn

https://sites.google.com/site/whjiangpage/

http://www.bupt-mcprl.net